Fourier Analysis Mar 14, 2024
Review.

- A cts but nowhere diff function on \mathbb{R}.

Let $\alpha \in(0,1)$. set

$$
f_{\alpha}(x)=\sum_{n=0}^{\infty} 2^{-n \alpha} e^{i 2^{n} x}, \quad x \in \mathbb{R}
$$

Then f_{α} is cts but nowhere differentiable.

- By modifying the proof of f_{α} being nowhere diff slightly, one can show the real and imaginary parts of f_{α} are also nowhere diff. That is,

$$
\sum_{n=0}^{\infty} 2^{-n \alpha} \cos \left(2^{n} x\right), \quad \sum_{n=0}^{\infty} 2^{-n \alpha} \sin \left(2^{n} x\right)
$$

are nowhere diff. (Check the outline proof in the text book).
§4.4 Heat equation on the circle.

heat conduction on the circle.

$$
\begin{aligned}
& \theta \in[0,2 \pi) \\
& \theta=2 \pi x, \quad x \in[0,1) .
\end{aligned}
$$

Let $U=U(x, t)$ be the temperature at point x and times.
Then u satisfies

$$
\frac{\partial u}{\partial t}=c \cdot \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in[0,1), \quad t>0 .
$$

By scaling the time if necessary, we may obtain a standard heat equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, \quad x \in[0,1), \quad t>0 . \tag{*}
\end{equation*}
$$

The function $u=U(x, t)$ can be extended to a function on $\mathbb{R} \times(0, \infty)$, which is 1 -penodic in x.

Here we would like to find a solution of (*), in the mean time, we ask u to satisfy an initial condition

$$
\begin{equation*}
U(x, 0)=f(x) \tag{**}
\end{equation*}
$$

We first find ${ }^{\text {some }}$ special solutions $U^{\text {sol }}(x, t)=A(x) B(t)$ of
Plugging $U=A(x) B(t)$ into (*), we obtain

$$
B^{\prime}(t) A(x)=A^{\prime \prime}(x) B(t)
$$

So

$$
\frac{A^{\prime \prime}(x)}{A(x)}=\frac{B^{\prime}(t)}{B(t)}=\lambda .
$$

From $A^{\prime \prime}(x)-\lambda A(x)=0$, we obtain

$$
A(x)= \begin{cases}c_{1} e^{\sqrt{\lambda} x}+c_{2} e^{-\sqrt{\lambda} x} & \text { if } \lambda>0 \\ c_{1} x+c_{2} & \text { if } \lambda=0 \\ c_{1} e^{i \sqrt{-\lambda} x}+c_{2} e^{-i \sqrt{-\lambda} x} & \text { if } \lambda<0\end{cases}
$$

To obtain a 1-pendoic solution $A(x)$, we must have $A(x)$ be a const or

$$
A(x)=C_{1} e^{i n 2 \pi x}+C_{2} \cdot e^{-i n 2 \pi x} \text { for some } n \in \mathbb{Z}
$$

corresponding to $\lambda=-(2 \pi n)^{2}=-4 \pi^{2} n^{2}$.

$$
\frac{B^{\prime}(t)}{B(t)}=-4 \pi^{2} n^{2} \Rightarrow B(t)=c \cdot e^{-4 \pi^{2} n^{2} t}
$$

Hence our special solution should be of form

$$
\begin{aligned}
U(x, t) & =\left(c_{1} e^{i 2 \pi n x}+c_{2} e^{-i 2 \pi n x}\right) \cdot c \cdot e^{-4 \pi^{2} n^{2} t} \\
& =\left(a_{n} e^{i 2 \pi n x}+a_{-n} e^{-i 2 \pi n x}\right) e^{-4 \pi^{2} n^{2} t}
\end{aligned}
$$

Using the superposition of there special solutions We would like to find $a_{n} \quad(n \in \mathbb{Z})$ such that

$$
u(x, t)=\sum_{n=-\infty}^{\infty} a_{n} e^{i 2 \pi n x} \cdot e^{-4 \pi^{2} n^{2} t}
$$

(***)

